Design of a data-driven communication framework as personalized support for users of ADAS

Julia Orlovska, Casper Wickman, Rikard Söderberg
2020 Procedia CIRP  
Design of a data-driven communication framework as personalized support for users of ADAS Procedia CIRP, 91: 121-126 http://dx. Abstract In today's business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production systems as well as to choose the optimal product matches, product analysis methods
more » ... e needed. Indeed, most of the known methods aim to analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the similarity between product families by providing design support to both, production system planners and product designers. An illustrative example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. Abstract Recently the automotive industry has made a huge leap forward in Automated Driver Assistance Systems (ADAS) development, increasing the level of driving processes automation. However, ADAS design does not imply any individual support to the driver; this results in a poor understanding of how the ADAS works and its limitations. This type of driver uncertainty regarding ADAS performance can erode the user's trust in the system and result in decreasing situations when the system is in use. This paper presents the design of a data-driven communication framework that can utilize historical and real-time vehicle data to support ADAS users. The data-driven communication framework aims to illustrate the ADAS capabilities and limitations and suggests effective use of the system in real-time driving situations. This type of assistance can improve a driver's understanding of ADAS functionality and encourage its usage. Abstract Recently the automotive industry has made a huge leap forward in Automated Driver Assistance Systems (ADAS) development, increasing the level of driving processes automation. However, ADAS design does not imply any individual support to the driver; this results in a poor understanding of how the ADAS works and its limitations. This type of driver uncertainty regarding ADAS performance can erode the user's trust in the system and result in decreasing situations when the system is in use. This paper presents the design of a data-driven communication framework that can utilize historical and real-time vehicle data to support ADAS users. The data-driven communication framework aims to illustrate the ADAS capabilities and limitations and suggests effective use of the system in real-time driving situations. This type of assistance can improve a driver's understanding of ADAS functionality and encourage its usage.
doi:10.1016/j.procir.2020.02.156 fatcat:z7d5zeu2jjccrbvorqkk2xzumm