Pre-acceleration from Landau-Lifshitz series

S. Zhang
2013 Progress of Theoretical and Experimental Physics  
The Landau-Lifshitz equation is considered as an approximation of the Abraham-Lorentz-Dirac equation. It is derived from the Abraham-Lorentz-Dirac equation by treating radiation reaction terms as a perturbation. However, while the Abraham-Lorentz-Dirac equation has pathological solutions of pre-acceleration and runaway, the Landau-Lifshitz equation and its finite higher order extensions are free of these problems. So it seems mysterious that the property of solutions of these two equations is
more » ... two equations is so different. In this paper we show that the problems of pre-acceleration and runaway appear when one consider a series of all-order perturbation which we call it the Landau-Lifshitz series. We show that the Landau-Lifshitz series diverges in general. Hence a resummation is necessary to obtain a well-defined solution from the Landau-Lifshitz series. This resummation leads the pre-accelerating and the runaway solutions. The analysis is focusing on the non-relativistic case, but we can extend the results obtained here to relativistic case at least in one dimension.
doi:10.1093/ptep/ptt099 fatcat:626okfkqpjdapnvjzl3kf2jdz4