Experimental and Numerical Study on Hydrodynamic Performance of an Underwater Glider

Yanji Liu, Jie Ma, Ning Ma, Zhijian Huang
2018 Mathematical Problems in Engineering  
The hydrodynamic coefficients are important parameters for predicting the motion of the glider and upgrading the hull design. In this paper, based on the Reynolds number similarity theory, 6 degrees of freedom (DOFs) of the fluid force and torque of a 1:1 full-scale glider model are measured. The present measurements were carried out at (2 - 14m/s) by varying attack angles and sideslip angles (-9 - 9°), respectively. The measurements were used to study the variation of the hydrodynamics of the
more » ... lider, and the measurements have also been used to validate results obtained from a CFD code that uses RNG k-ε. The hydrodynamic force coefficients obtained from CFD accord well with the measurements. However, the torque coefficients difference is fairly large. Dynamics simulation results show that CFD results can be used to design and study the motion characteristics of gliders. In order to simplify the design process of gliders, we fit the empirical formula based on the experimental data and obtain a drag coefficient equation with Reynolds number. The influence of two kinds of appendages of the Conductance-Temperature-Depth (CTD) unit and thruster unit on the glider drag were studied by a contrast test. The analysis results can provide reference for design and the motion investigate of gliders.
doi:10.1155/2018/8474389 fatcat:xr5kyv3onfd4lirmuq7l2lp5ze