A joint model for hierarchical continuous and zero-inflated overdispersed count data

Wondwosen Kassahun, Thomas Neyens, Geert Molenberghs, Christel Faes, Geert Verbeke
2013 Journal of Statistical Computation and Simulation  
Many applications in public health, medical and biomedical or other studies demand modelling of two or more longitudinal outcomes jointly to get better insight into their joint evolution. In this regard, a joint model for a longitudinal continuous and a count sequence, the latter possibly overdispersed and zero-inflated (ZI), will be specified that assembles aspects coming from each one of them into one single model. Further, a subject-specific random effect is included to account for the
more » ... ation in the continuous outcome. For the count outcome, clustering and overdispersion are accommodated through two distinct sets of random effects in a generalized linear model as proposed by Molenberghs et al. [A family of generalized linear models for repeated measures with normal and conjugate random effects. Stat Sci. 2010;25:325-347]; one is normally distributed, the other conjugate to the outcome distribution. The association among the two sequences is captured by correlating the normal random effects describing the continuous and count outcome sequences, respectively. An excessive number of zero counts is often accounted for by using a so-called ZI or hurdle model. ZI models combine either a Poisson or negative-binomial model with an atom at zero as a mixture, while the hurdle model separately handles the zero observations and the positive counts. This paper proposes a general joint modelling framework in which all these features can appear together. We illustrate the proposed method with a case study and examine it further with simulations.
doi:10.1080/00949655.2013.829058 fatcat:xbs2akoazrekxcww2p52uvqnty