Enhanced accumulation of N-terminally truncated Aβ with and without pyroglutamate-11 modification in parvalbumin-expressing GABAergic neurons in idiopathic and dup15q11.2-q13 autism

Janusz Frackowiak, Bozena Mazur-Kolecka, Pankaj Mehta, Jerzy Wegiel
2020 Acta Neuropathologica Communications  
Autism, the most frequent neurodevelopmental disorder of a very complex etiopathology, is associated with dysregulation of cellular homeostatic mechanisms, including processing of amyloid-β precursor protein (APP). Products of APP processing - N-terminally truncated amyloid-β peptide (N-tr-Aβ) species - are accumulated in autism in neurons and glia in the cortex, cerebellum, and subcortical structures of the brain. This process in neurons is correlated with increased oxidative stress. Because
more » ... e stress. Because abnormally high levels of N-tr-Aβ are detected in only a fraction of neurons in the prefrontal cortex, we applied immunocytochemical staining and confocal microscopy in autopsy brain material from idiopathic and chromosome 15q11.2-q13 duplication (dup-15) autism to measure the load of N-tr-Aβ in the cells and synapses and to identify the subpopulation of neurons affected by these pathophysiological processes. The peptides accumulated in autism are N-terminally truncated; therefore, we produced a new antibody against Aβ truncated at N-terminal amino acid 11 modified to pyroglutamate to evaluate the presence and distribution of this peptide species in autism. We also quantified and characterized the oligomerization patterns of the Aβ-immunoreactive peptides in autism and control frozen brain samples. We provide morphological evidence, that in idiopathic and dup-15 autism, accumulation of N-tr-Aβ with and without pyroglutamate-11 modified N-terminus affects mainly the parvalbumin-expressing subpopulation of GABAergic neurons. N-tr-Aβ peptides are accumulated in neurons' cytoplasm and nucleus as well as in GABAergic synapses. Aβ peptides with both C-terminus 40 and 42 were detected by immunoblotting in frozen cortex samples, in the form of dimers and complexes of the molecular sizes of 18-24kD and 32-34kD. We propose that deposition of N-tr-Aβ specifically affects the functions of the parvalbumin-expressing GABAergic neurons and results in a dysregulation of brain excitatory-inhibitory homeostasis in autism. This process may be the target of new therapies.
doi:10.1186/s40478-020-00923-8 pmid:32345355 fatcat:76jdi7oudja53degov3tdc4yy4