Upper bounds for residues of Dedekind zeta functions and class numbers of cubic and quartic number fields

Stéphane R. Louboutin
2011 Mathematics of Computation  
Let K be an algebraic number field. Assume that ζ K (s)/ζ(s) is entire. We give an explicit upper bound for the residue at s = 1 of the Dedekind zeta function ζ K (s) of K. We deduce explicit upper bounds on class numbers of cubic and quartic number fields.
doi:10.1090/s0025-5718-2011-02457-9 fatcat:sfrwezmzl5dz7dbor2lmn5hli4