Volume Integral Equation Method for Multiple Anisotropic Inclusion Problems in an Infinite Solid under Uniaxial Tension
인장 하중을 받는 무한 고체에 포함된 다수의 이방성 함유체 문제 해석을 위한 체적 적분방정식법

Jung-Ki Lee
2010 Journal of The Korean Society for Composite Materials  
A volume integral equation method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solids containing interacting multiple anisotropic inclusions subject to remote uniaxial tension. The method is applied to two-dimensional problems involving long parallel cylindrical inclusions. A detailed analysis of stress field at the interface between the matrix and the central inclusion is carried out for square and hexagonal packing of the inclusions. Effects
more » ... of the number of anisotropic inclusions and various fiber volume fractions on the stress field at the interface between the matrix and the central inclusion are also investigated in detail. The accuracy of the method is validated by solving the single inclusion problem for which solutions are available in the literature. 초 록 체적 적분방정식법(Volume Integral Equation Method)이라는 새로운 수치해석 방법을 이용하여, 서로 상호작용을 하는 이 방성 함유체를 포함하는 등방성 무한고체가 정적 인장하중을 받을 때 무한고체 내부에 발생하는 응력분포 해석을 매우 효과 적으로 수행하였다. 즉, 등방성 기지에 다수의 이방성 함유체가 1) 정사각형 배열 형태 또는 2) 정육각형 배열 형태로 포함되 어 있는 경우에 대하여, 다양한 함유체의 체적비에 대하여, 중앙에 위치한 이방성 함유체와 등방성 기지의 경계면에서의 인장 응력 분포의 변화를 구체적으로 조사하였다. 또한, 단일의 이방성 함유체에 대한 체적 적분방정식법을 이용한 해와 해석해를 비교해 봄으로서, 체적 적분방정식법을 이용하여 구한 해의 정확도를 검증하였다.
doi:10.7234/kscm.2010.23.4.007 fatcat:bebfaz3vxvgxjb2axf4r4rxzfy