A Hybrid Feature Ranking Algorithm for Assisted Reproductive Technology Outcome Prediction

Ranjini Kothandaraman, Suruliandi Andavar, Raja Soosaimarian Peter Raj
2022 Brazilian Archives of Biology and Technology  
In recent years, the emerging technology of machine learning has made vast strides in medicine. Machine learning-based clinical decision support systems assist doctors make efficient diagnoses and offer better prescriptions. Today, one of the greatest challenges for doctors worldwide is the treatment of infertility, with even the most sophisticated technology offering limited success. Currently, the Assisted Reproductive Technology (ART) in use is highly sophisticated technology that offers a
more » ... ccess rate of 20%, depending on a slew of factors with complex relationships. With their capacity to analyze large and complex datasets, the application of machine learning techniques to predictions can maximize the ART success rate. This research work attempts a dynamic model for ART outcome prediction using incremental classifiernamed Ensemble of Heterogeneous Incremental Classifier (EHIC) in Machine Learning. In this paper,a new feature ranking algorithm named Voted Information Gain Attribute Rank Estimation Algorithm (VIGAREA) is proposed to enhance the performance of EHIC. The proposed VIGAREA is a combination of a number of feature selection methods and information gain ratio of each variable. It has the capability to rank the features based on its significance. The methodology and the way how the proposed VIGAREA is developed is presented. Experimental results proved that the EHIC with the proposed VIGAREA achieves the highest prediction with the ROC area of 95.5% for the ART dataset used for the research. The effectiveness of the proposed VIGAREA is checked with a range of miscellaneous feature selection methods and found that the proposed HIGHLIGHTS • Proposed a hybrid feature ranking algorithm named VIGAREA • The proposed feature ranking algorithm gives importance to the individual feature as well as interaction between the features. • The proposed VIGAREA can combine any number and type of feature selection methods along with information gain ratio
doi:10.1590/1678-4324-2022210605 fatcat:fgvrs5y3wrdvfb434nqodatoyu