AI solutions for drafting in Magic: the Gathering [article]

Henry N. Ward, Daniel J. Brooks, Dan Troha, Bobby Mills, Arseny S. Khakhalin
2021 arXiv   pre-print
Drafting in Magic the Gathering is a sub-game within a larger trading card game, where several players progressively build decks by picking cards from a common pool. Drafting poses an interesting problem for game and AI research due to its large search space, mechanical complexity, multiplayer nature, and hidden information. Despite this, drafting remains understudied, in part due to a lack of high-quality, public datasets. To rectify this problem, we present a dataset of over 100,000
more » ... anonymized human drafts collected from Draftsim.com. We also propose four diverse strategies for drafting agents, including a primitive heuristic agent, an expert-tuned complex heuristic agent, a Naive Bayes agent, and a deep neural network agent. We benchmark their ability to emulate human drafting, and show that the deep neural network agent outperforms other agents, while the Naive Bayes and expert-tuned agents outperform simple heuristics. We analyze the accuracy of AI agents across the timeline of a draft, and describe unique strengths and weaknesses for each approach. This work helps to identify next steps in the creation of humanlike drafting agents, and can serve as a benchmark for the next generation of drafting bots.
arXiv:2009.00655v3 fatcat:lkzlfwgb5ragrkayhygraxuihi