Kondo effect and channel mixing in oscillating molecules

J. Mravlje, A. Ramšak
2008 Physical Review B  
We investigate the electronic transport through a molecule in the Kondo regime. The tunneling between the electrode and the molecule is asymmetrically modulated by the oscillations of the molecule, i.e., if the molecule gets closer to one of the electrodes the tunneling to that electrode will increase while for the other electrode it will decrease. The system is described by a two-channel Anderson model with phonon-assisted hybridization, which is solved with the Wilson numerical
more » ... ical renormalization group method. The results for several functional forms of tunneling modulation are presented. For a linearized modulation the Kondo screening of the molecular spin is caused by the even or odd conduction channel. At the critical value of the electron-phonon coupling an unstable two-channel Kondo fixed point is found. For a realistic modulation the spin at the molecular orbital is Kondo screened by the even conduction channel even in the regime of strong coupling. A universal consequence of the electron-phonon coupling is the softening of the phonon mode and the related instability to perturbations that break the left-right symmetry. When the frequency of oscillations decreases below the magnitude of such perturbation, the molecule is abruptly attracted to one of the electrodes. In this regime, the Kondo temperature is enhanced and, simultaneously, the conductance through the molecule is suppressed.
doi:10.1103/physrevb.78.235416 fatcat:qneqfbgt2rhqrmro6fyeyp524i