Cortical Surface Area and Cortical Thickness Demonstrate Differential Structural Asymmetry in Auditory-Related Areas of the Human Cortex
M. Meyer, F. Liem, S. Hirsiger, L. Jancke, J. Hanggi
2013
Cerebral Cortex
This investigation provides an analysis of structural asymmetries in 5 anatomically defined regions (Heschl's gyrus, HG; Heschl's sulcus, HS; planum temporale, PT; planum polare, PP; superior temporal gyrus, STG) within the human auditory-related cortex. Volumetric 3-dimensional T1-weighted magnetic resonance imaging scans were collected from 104 participants (52 males). Cortical volume (CV), cortical thickness (CT), and cortical surface area (CSA) were calculated based on individual scans of
more »
... ese anatomical traits. This investigation demonstrates a leftward asymmetry for CV and CSA that is observed in the HG, STG, and PT regions. As regards CT, we note a rightward asymmetry in the HG and HS. A correlation analysis of asymmetry indices between measurements for distinct regions of interest (ROIs) yields significant correlations between CT and CV in 4 of 5 ROIs (HG, HS, PT, and STG). Significant correlation values between CSA and CV are observed for all 5 ROIs. The findings suggest that auditory-related cortical areas demonstrate larger leftward asymmetry with respect to the CSA, while a clear rightward asymmetry with respect to CT is salient in both the primary and the secondary auditory cortex only. In addition, we propose that CV is not an ideal neuromarker for anatomical measurements. CT and CSA should be considered independent traits of anatomical asymmetries in the auditory-related cortex. This investigation provides an analysis of structural asymmetries in 5 anatomically defined regions (Heschl's gyrus, HG; Heschl's sulcus, HS; planum temporale, PT; planum polare, PP; superior temporal gyrus, STG) within the human auditory-related cortex. Volumetric 3dimensional T 1 -weighted magnetic resonance imaging scans were collected from 104 participants (52 males). Cortical volume (CV), cortical thickness (CT), and cortical surface area (CSA) were calculated based on individual scans of these anatomical traits. This investigation demonstrates a leftward asymmetry for CV and CSA that is observed in the HG, STG, and PT regions. As regards CT, we note a rightward asymmetry in the HG and HS. A correlation analysis of asymmetry indices between measurements for distinct regions of interest (ROIs) yields significant correlations between CT and CV in 4 of 5 ROIs (HG, HS, PT, and STG). Significant correlation values between CSA and CV are observed for all 5 ROIs. The findings suggest that auditory-related cortical areas demonstrate larger leftward asymmetry with respect to the CSA, while a clear rightward asymmetry with respect to CT is salient in both the primary and the secondary auditory cortex only. In addition, we propose that CV is not an ideal neuromarker for anatomical measurements. CT and CSA should be considered independent traits of anatomical asymmetries in the auditory-related cortex.
doi:10.1093/cercor/bht094
pmid:23645712
fatcat:ffvhyrccgjgwdpmad2yvhmbkri