Study On the Mechanism of LMP2A Maintaining Epstein-barr Virus Latency Infection Through Interaction With CXCR4 [post]

Ni Qin, Yan Zhang, Lin Xu, Wen Liu, Bing Luo
2021 unpublished
Epstein-Barr virus (EBV) belongs to the γ-herpesvirus subfamily and is the first human tumor virus to be discovered. The global adult infection rate exceeds 90%. EBV can participate in the regulation of multiple genes and multiple signal pathways through its latent genes. Many studies have reported that CXCR4 is involved in the development of gastric cancer, but there are few studies on the specific mechanism of its role in EBV-associated gastric cancer (EBVaGC). In this study, we explored the
more » ... echanism by which EBV-encoded products maintain EBV latent infection through interaction with CXCR4, and the role of CXCR4 in EBV positive cells. The results show that there is a positive feedback between the EBV-encoded products and CXCR4, and LMP2A can activate CXCR4 through the NF-κB pathway. In addition, CXCR4 can be fed back to LMP2A and EBNA1 through the ERK signaling pathway. At the same time, CXCR4 can promote the proliferation and migration of EBV-positive cells, reduce the expression of the immediate early protein BZLF1, and play an important role in maintaining the incubation period of EBV infection. These findings are conducive to the further targeted therapy of EBVaGC.
doi:10.21203/ fatcat:2mkpbh4bbbg5plgbmcrglqgb3i