Platelets as a Novel Source of Pro-Inflammatory Chemokine CXCL14

Alexander Witte, Madhumita Chatterjee, Florian Lang, Meinrad Gawaz
2017 Cellular Physiology and Biochemistry  
Objective: Platelets are a major source of chemokines. Here, we demonstrate for the first time that platelets express significant amounts of CXCL14 and disclose powerful effects of plateletderived CXCL14 on monocyte and endothelial migration. Methods: The expression of CXCL14 in platelets and in the supernatant of activated platelets was analysed by immunoblotting, ELISA, and flow cytometry. The effect of platelet-derived CXCL14 on monocyte migration was evaluated using a modified Boyden
more » ... ified Boyden chamber. The effect of CXCL14 on monocyte phagocytosis was tested by using fluorochrome-labelled E.coli particles. The effect of platelet-derived CXCL14 on endothelial migration was explored by the use of an endothelial scratch assay. Results: Hitherto unrecognized expression of CXCL14 in human and murine platelets was uncovered by immunoblotting. Activation with platelet agonists such as adenosine-di-phosphate (ADP), collagen-related peptide (CRP), or thrombin-receptor activating peptide (TRAP), increased CXCL14 surface expression (flow cytometry) and release into the supernatant (immunoblotting, ELISA). Since CXCL14 is known to be chemotactic for CD14 + monocytes, we investigated the chemotactic potential of platelet-derived CXCL14 on human monocytes. Activated platelet supernatant induced monocyte migration, which was counteracted upon neutralization of platelet-derived CXCL14 as compared to IgG control. Blocking of the chemokine receptor CXCR4, but not CXCR7, reduced the number of migratory monocytes towards recombinant CXCL14, suggesting the involvement of CXCR4 in the CXCL14-directed monocyte chemotaxis. Recombinant CXCL14 enhanced the phagocytic uptake of E.coli particles by monocytes. In scratch assays with cultured endothelial cells (HUVECs), platelet-derived CXCL14 counteracted the pro-angiogenic effects of VEGF, supporting its previously recognized angiostatic potential. Conclusions: Platelets are a relevant source of CXCL14. Platelet-derived CXCL14 at the site of vascular lesions might play an important role in vascular repair/regeneration.
doi:10.1159/000471821 pmid:28359053 fatcat:d2lqeeq3xvfo7ilvzniuoz3vg4