Choiceless polynomial time

Andreas Blass, Yuri Gurevich, Saharon Shelah
1999 Annals of Pure and Applied Logic  
Turing machines deÿne polynomial time (PTime) on strings but cannot deal with structures like graphs directly, and there is no known, easily computable string encoding of isomorphism classes of structures. Is there a computation model whose machines do not distinguish between isomorphic structures and compute exactly PTime properties? This question can be recast as follows: Does there exist a logic that captures polynomial time (without presuming the presence of a linear order)? Earlier, one of
more » ... us conjectured a negative answer. The problem motivated a quest for stronger and stronger PTime logics. All these logics avoid arbitrary choice. Here we attempt to capture the choiceless fragment of PTime. Our computation model is a version of abstract state machines (formerly called evolving algebras). The idea is to replace arbitrary choice with parallel execution. The resulting logic expresses all properties expressible in any other PTime logic in the literature. A more di cult theorem shows that the logic does not capture all of PTime. : S 0 1 6 8 -0 0 7 2 ( 9 9 ) 0 0 0 0 5 -6
doi:10.1016/s0168-0072(99)00005-6 fatcat:gqnccerwmfd5pdyvg6k33q72ue