HyTasker: Hybrid Task Allocation in Mobile Crowd Sensing [article]

Jiangtao Wang, Feng Wang, Yasha Wang, Leye Wang, Zhaopeng Qiu, Daqing Zhang, Bin Guo, Qin Lv
2018 arXiv   pre-print
Task allocation is a major challenge in Mobile Crowd Sensing (MCS). While previous task allocation approaches follow either the opportunistic or participatory mode, this paper proposes to integrate these two complementary modes in a two-phased hybrid framework called HyTasker. In the offline phase, a group of workers (called opportunistic workers) are selected, and they complete MCS tasks during their daily routines (i.e., opportunistic mode). In the online phase, we assign another set of
more » ... s (called participatory workers) and require them to move specifically to perform tasks that are not completed by the opportunistic workers (i.e., participatory mode). Instead of considering these two phases separately, HyTasker jointly optimizes them with a total incentive budget constraint. In particular, when selecting opportunistic workers in the offline phase of HyTasker, we propose a novel algorithm that simultaneously considers the predicted task assignment for the participatory workers, in which the density and mobility of participatory workers are taken into account. Experiments on a real-world mobility dataset demonstrate that HyTasker outperforms other methods with more completed tasks under the same budget constraint.
arXiv:1805.08480v1 fatcat:gc7hkvdbvzbbfdmg6rjcxntam4