A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2015; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
DRAZIN INVERSES IN JÖRGENS ALGEBRAS OF BOUNDED LINEAR OPERATORS

2008
*
Mathematical Proceedings of the Royal Irish Academy
*

Let X be a Banach space and T be a bounded linear operator from X to itself (T ∈ B(X).) An operator D ∈ B(X) is a Drazin inverse of T if T D = DT , D = T D 2 and T k = T k+1 D for some nonnegative integer k. In this paper we look at the Jörgens algebra, an algebra of operators on a dual system, and characterise when an operator in that algebra has a Drazin inverse that is also in the algebra. This result is then applied to bounded inner product spaces and *-algebras.

doi:10.3318/pria.2008.108.1.81
fatcat:xsdfqh7ch5bxbkiiqiszjcfdhe