Selecting and weighting users in collaborative filtering based POI recommendation

2017 Acta Polytechnica Hungarica  
Location-based recommender systems (LBRSs) provide a technological solution for helping users to cope with the vast amount of information coming from geo-localization services. Most online social networks capture the geographic location of users and their points-of-interests (POIs). Location-based social networks (LBSNs), like Foursquare, leverage technologies such as GPS, Web 2.0 and smartphones allow users to share their locations (check-ins), search for POIs, look for discounts, comment
more » ... ounts, comment about specific places, connect with friends and find the ones who are near a specific location. LBRSs play an important role in social networks nowadays as they generate suggestions based on techniques such as collaborative filtering (CF). In this traditional recommendation approach, prediction about a user preferences are based on the opinions of like-minded people. Users that can provide valuable information for prediction need to be first selected from the complete network and, then, their opinions weighted according to their expected contribution. In this paper, we propose and analyze a number of strategies for selecting neighbors within the CF framework leveraging on information contained in the users' social network, common visits, visiting area and POIs categories as influential factors. Experimental evaluation with data from Foursquare social network shed some light on the impact of different mechanisms on user weighting for prediction.
doi:10.12700/aph.14.3.2017.3.2 fatcat:ubpi3mb6qjc7zjfuzrfyi6cs3i