A tropical approach to secant dimensions [article]

Jan Draisma
<span title="2006-09-05">2006</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Tropical geometry yields good lower bounds, in terms of certain combinatorial-polyhedral optimisation problems, on the dimensions of secant varieties. In particular, it gives an attractive pictorial proof of the theorem of Hirschowitz that all Veronese embeddings of the projective plane except for the quadratic one and the quartic one are non-defective; this proof might be generalisable to cover all Veronese embeddings, whose secant dimensions are known from the ground-breaking but difficult
more &raquo; ... k of Alexander and Hirschowitz. Also, the non-defectiveness of certain Segre embeddings is proved, which cannot be proved with the rook covering argument already known in the literature. Short self-contained introductions to secant varieties and the required tropical geometry are included.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0605345v3">arXiv:math/0605345v3</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/iomubj7ryzcn7fcsemmlsthuau">fatcat:iomubj7ryzcn7fcsemmlsthuau</a> </span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math0605345/math0605345.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> File Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0605345v3" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>