A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Consistency in models for distributed learning under communication constraints
2006
IEEE Transactions on Information Theory
Motivated by sensor networks and other distributed settings, several models for distributed learning are presented. The models differ from classical works in statistical pattern recognition by allocating observations of an independent and identically distributed (i.i.d.) sampling process amongst members of a network of simple learning agents. The agents are limited in their ability to communicate to a central fusion center and thus, the amount of information available for use in classification
doi:10.1109/tit.2005.860420
fatcat:rcxuu5m5svfrtjfpunwkzfyzoi