A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
User Authentication by Gait Data from Smartphone Sensors Using Hybrid Deep Learning Network
2022
Mathematics
User authentication and verification by gait data based on smartphones' inertial sensors has gradually attracted increasing attention due to their compact size, portability and affordability. However, the existing approaches often require users to walk on a specific road at a normal walking speed to improve recognition accuracy. In order to recognize gaits under unconstrained conditions on where and how users walk, we proposed a Hybrid Deep Learning Network (HDLN), which combined the advantages
doi:10.3390/math10132283
fatcat:ctg3vsp5djacrcs7fsi73jgwiy