Optimization Culture Conditions of Differentiating Endothelial Progenitor Cells From Human Mononuclear Cells in Vitro

Xu Qing
2019 Biomedical Journal of Scientific & Technical Research  
VitOrgan is a cell molecule drug extracted from bovine embryonic cells for anti-aging therapy since the 1965s in European countries. However, the molecular mechanisms involved remain unclear and underresearched. In this study, we applied human cytokine arraywith a group of 440 against-cytokine antibody, functionalGO term enrichmentand network technique to analyze the composition of vitOrgan (Mixed liquid: NeyPson Nr.5, NeyThel Nr.62, NeyNormin Nr.65, NeyDIL Nr.66, NeyDia Nr.67, NeyDIL Nr.70,
more » ... Desib Nr.78, NeyTroph Nr.96). The experimental results confirmed that the vitOrgan drug contains 123 cytokines, including ACE2, and ULBP2. Cluster analysis through biomedical informatics techniques suggestscytokines of vitOrganis a positive influences in cell biomedical regulation, including positive regulations of insulin-like growth factor receptor signaling pathway, cell proliferation, cell division, cell growth, ERK1 and ERK2 cascade, bone mineralization, epithelial cell proliferation, phosphatidylinositol 3-kinase signaling, protein kinase B signaling, glucose import, MAPK cascade, osteoblast differentiation pathway-restricted SMAD protein phosphoryl, cAMP metabolic process, tyrosine phosphorylation of Stat1 protein, participating immune response, proteoglycan biosynthetic process, inflammatory response, defense response to virus, chemokine-mediated signaling pathway, angiogenesis, growth factor activity, insulin secretion, DNA replication, lymphocyte chemotaxis, peptide catabolic process, endothelial cell apoptotic process and many other cell molecular activities. A preliminary interactome was built forthe bovine vitOrgan proteins. Our results confirm the great potential of the vitOrgan as a clinical relevant therapeutic strategy.
doi:10.26717/bjstr.2019.15.002640 fatcat:4nv46rdyjngw7m2umu3lsxa6ai