Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation

Peter Ziegenhein, Sven Pirner, Cornelis Ph Kamerling, Uwe Oelfke
2015 Physics in Medicine and Biology  
Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by
more » ... e-frame by leveraging the potential of modern many-and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37× compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25× and 1.95× faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated. P Ziegenhein et al Phys. Med. Biol. 60 (2015) 6097 P Ziegenhein et al Phys. Med. Biol. 60 (2015) 6097 P Ziegenhein et al Phys. Med. Biol. 60 (2015) 6097 P Ziegenhein et al Phys. Med. Biol. 60 (2015) 6097
doi:10.1088/0031-9155/60/15/6097 pmid:26216484 fatcat:tc6ber6rwne63humxb4cyz4pma