Flexible, printed, Pb-free piezo-composites for haptic feedback systems

T. R. Mahon, V.L. Stuber, S.K. Ammu, S. van der Zwaag, P. Groen, T. Hoeks, S. Guhathakurtha
2019 2019 IEEE International Symposium on Applications of Ferroelectrics (ISAF)  
While most of the work on piezoelectric composites focuses on methods to reduce the dielectric constant of the composite (for better sensor and energy harvesting performance), for haptic feedback and actuator applications the opposite is desirable. We present here a study of the effect of adding a second ceramic phase (BaTiO3 nanoparticles) to composites of (K0.5N0.5)1-xLixNbO3 (x = 0.03) in PVDF-TrFE-CFE in order to increase the dielectric constant of the composite. Adding small amounts of
more » ... e nanoparticles to the composites results in an increase in the dielectric constant and, at high total ceramic loadings, an increase in the density of the composite. Furthermore, while adding larger amounts of nanoparticles leads to agglomeration and reduced densities, it also allows access to higher loadings of ceramic than normally attainable.
doi:10.1109/isaf43169.2019.9034962 fatcat:frjdqet7cbhafldqu6bf2kwxbe