Modularity and Dynamics of Cellular Networks

Yuan Qi, Hui Ge
2006 PLoS Computational Biology  
U nderstanding how the phenotypes and behaviors of cells are controlled is one of the major challenges in biological research. Traditionally, focus has been given to the characterization of individual genes/proteins or individual interactions during cellular events. However, many phenotypes and behaviors cannot be attributed to isolated components. Rather, they arise from characteristics of cellular networks, which represent connections between molecules in cells. We review the recent progress
more » ... n analyzing the architecture and dynamics of cellular networks. We also summarize how computational modeling yields insight about cell signaling pathways. The responses of cells to genetic perturbations or environmental cues are controlled by complex networks, including interconnected signaling pathways and cascades of transcriptional programs. The advance of genome technologies has made it possible to analyze cellular events on a global scale. A number of high-throughput techniques, such as DNA microarrays, chromatin immunoprecipitations, and yeast two-hybrid and mass-spectrometry analyses have been applied to cellular systems [1-10]. These experiments have provided first-draft catalogs of essential components, transcriptional regulatory diagrams, and molecular interaction maps for a number of organisms. In addition to providing a candidate list of biomolecules involved in biological processes, the high-throughput technologies offer unprecedented opportunities to derive underlying principles of how complex cellular networks are built and how network architectures contribute to phenotypes. A series of important questions in this area have been addressed recently (Figure 1 ). For example, what are the characteristics of cellular network structures that distinguish them from randomly generated networks? Are the network structures relevant for biological functions? If so, are they evolutionarily conserved and how do they evolve? Are some topological patterns preferred at certain times or conditions? These questions are analogous to those asked in the field of genome sequence analysis, such as identifying biologically relevant sequence motifs and domains, investigating the evolutionary conservation between sequences from different species, and understanding temporal or spatial specificities of regulatory sites. In this paper, we survey recent progress on addressing these questions and use mammalian cell signaling as case studies to discuss how computational analyses of networks shed light on specific biological processes.
doi:10.1371/journal.pcbi.0020174 pmid:17196032 pmcid:PMC1761653 fatcat:lbh3p667kbhubegexlnfmglw24