Analytics and Machine Learning in Vehicle Routing Research [article]

Ruibin Bai and Xinan Chen and Zhi-Long Chen and Tianxiang Cui and Shuhui Gong and Wentao He and Xiaoping Jiang and Huan Jin and Jiahuan Jin and Graham Kendall and Jiawei Li and Zheng Lu and Jianfeng Ren and Paul Weng and Ning Xue and Huayan Zhang
2021 arXiv   pre-print
The Vehicle Routing Problem (VRP) is one of the most intensively studied combinatorial optimisation problems for which numerous models and algorithms have been proposed. To tackle the complexities, uncertainties and dynamics involved in real-world VRP applications, Machine Learning (ML) methods have been used in combination with analytical approaches to enhance problem formulations and algorithmic performance across different problem solving scenarios. However, the relevant papers are scattered
more » ... in several traditional research fields with very different, sometimes confusing, terminologies. This paper presents a first, comprehensive review of hybrid methods that combine analytical techniques with ML tools in addressing VRP problems. Specifically, we review the emerging research streams on ML-assisted VRP modelling and ML-assisted VRP optimisation. We conclude that ML can be beneficial in enhancing VRP modelling, and improving the performance of algorithms for both online and offline VRP optimisations. Finally, challenges and future opportunities of VRP research are discussed.
arXiv:2102.10012v1 fatcat:ihs27x2qu5c55fljxuy4fhawgq