FEGS: a novel feature extraction model for protein sequences and its applications

Zengchao Mu, Ting Yu, Xiaoping Liu, Hongyu Zheng, Leyi Wei, Juntao Liu
2021 BMC Bioinformatics  
Background Feature extraction of protein sequences is widely used in various research areas related to protein analysis, such as protein similarity analysis and prediction of protein functions or interactions. Results In this study, we introduce FEGS (Feature Extraction based on Graphical and Statistical features), a novel feature extraction model of protein sequences, by developing a new technique for graphical representation of protein sequences based on the physicochemical properties of
more » ... properties of amino acids and effectively employing the statistical features of protein sequences. By fusing the graphical and statistical features, FEGS transforms a protein sequence into a 578-dimensional numerical vector. When FEGS is applied to phylogenetic analysis on five protein sequence data sets, its performance is notably better than all of the other compared methods. Conclusion The FEGS method is carefully designed, which is practically powerful for extracting features of protein sequences. The current version of FEGS is developed to be user-friendly and is expected to play a crucial role in the related studies of protein sequence analyses.
doi:10.1186/s12859-021-04223-3 pmid:34078264 fatcat:za4lzippenf5xaq2lis6fnld4u