Panax Notoginseng Saponins: A Review of Its Mechanisms of Antidepressant or Anxiolytic Effects and Network Analysis on Phytochemistry and Pharmacology

Weijie Xie, Xiangbao Meng, Yadong Zhai, Ping Zhou, Tianyuan Ye, Zhen Wang, Guibo Sun, Xiaobo Sun
2018 Molecules  
Panax notoginseng (Burk) F. H. Chen, as traditional Chinese medicine, has a long history of high clinical value, such as anti-inflammatory, anti-oxidation, inhibition of platelet aggregation, regulation of blood glucose and blood pressure, inhibition of neuronal apoptosis, and neuronal protection, and its main ingredients are Panax notoginseng saponins (PNS). Currently, Panax notoginseng (Burk) F. H. Chen may improve mental function, have anti-insomnia and anti-depression effects, alleviate
more » ... ects, alleviate anxiety, and decrease neural network excitation. However, the underlying effects and the mechanisms of Panax notoginseng (Burk) F. H. Chen and its containing chemical constituents (PNS) on these depression-related or anxiety-related diseases has not been completely established. This review summarized the antidepressant or anxiolytic effects and mechanisms of PNS and analyzed network targets of antidepressant or anxiolytic actions with network pharmacology tools to provide directions and references for further pharmacological studies and new ideas for clinical treatment of nervous system diseases and drug studies and development. The review showed PNS and its components may exert these effects through regulating neurotransmitter mechanism (5-HT, DA, NE), modulation of the gamma-amino butyric acid (GABA) neurotransmission, glutamatergic system, hypo-thalamus-pituitary-adrenal (HPA) axis, brain-derived neurotrophic factor (BDNF), and its intracellular signaling pathways in the central nervous system; and produce neuronal protection by anti-inflammatory, anti-oxidation, or inhibition of neuronal apoptosis, or platelet aggregation and its intracellular signaling pathways. Network target analysis indicated PNS and its components also may have anti-inflammatory and anti-apoptotic effects, which leads to the preservation of brain nerves, and regulate the activity and secretion of nerve cells, exerting anti-depression and anxiolytic effects, which may provide new directions for further in-depth researches of related mechanisms.
doi:10.3390/molecules23040940 pmid:29673237 fatcat:xueag66jlveqhbi74qqnvhbhsy