Increased Integration of Transplanted CD73-Positive Photoreceptor Precursors into Adult Mouse Retina

Dominic Eberle, Sandra Schubert, Kai Postel, Denis Corbeil, Marius Ader
2011 Investigative Ophthalmology and Visual Science  
PURPOSE. Retinal degeneration initiated by loss of photoreceptors is the prevalent cause of visual impairment and blindness in industrialized countries. Transplantation of photoreceptor cells represents a possible replacement strategy. This study determined that identification of cell surface antigens can assist in enriching photoreceptor precursors for transplantation. METHODS. The expression profile of rod photoreceptors at postnatal day 4 was investigated by microarray analysis to identify
more » ... lysis to identify photoreceptor-specific cell surface antigens. For enrichment of transplantable photoreceptors, neonatal retinas from rod photoreceptor-specific reporter mice were dissociated, and the rods were purified by magnetic associated cell sorting (MACS) with CD73 antibodies. MAC-sorted cell fractions were transplanted into the subretinal space of adult wild-type mice. The number of rod photoreceptors contained in unsorted, CD73-negative, and CD73-positive cell fractions were quantified in vitro and after grafting in vivo. RESULTS. Microarray analysis revealed that CD73 is a marker for rod photoreceptors. CD73-based MACS resulted in enrichment of rods to 87%. Furthermore, in comparison with unsorted cell fractions, CD73-positive MAC-sorted cells showed an approximately three-fold increase in the number of integrated, outer segment-forming photoreceptors after transplantation. CONCLUSIONS. CD73-based MACS is a reliable method for the enrichment of integrating photoreceptors. Purification via cell surface markers represents a new tool for the separation of transplantable photoreceptor precursors from a heterogeneous cell population, avoiding the need of reporter gene expression in target cells. (Invest Ophthalmol Vis Sci. 2011;52: 6462-6471)
doi:10.1167/iovs.11-7399 pmid:21743009 fatcat:4eansb7opfgzfbhrjtxu3qbcae