Vibration Compensation for a Vehicle-mounted Atom Gravimeter [post]

Jie Guo, Siqian Ma, Chao Zhou, Jixun Liu, Bin Wang, Debin Pan, and Haicen Mao
2021 unpublished
The performance of the absolute atom gravimeters used on moving platforms, such as vehicles, ships and aircrafts, is strongly affected by the vibration noise. To suppress its influence, we summarize a vibration compensation method utilizing data measured by a classical accelerometer. The measurements with the accelerometer show that the vibration noise in the vehicle can be 2 order of magnitude greater than that in the lab during daytime, and can induce an interferometric phase fluctuation with
more » ... a standard deviation of 16.70π. With the compensation method, our vehicle-mounted atom gravimeter can work normally in these harsh conditions. Comparing the Allan standard deviations before and after the vibration noise correction, we find a suppression factor of 22.74 can be achieved in static condition with an interrogation time of T = 20 ms, resulting a sensitivity of 1.35 mGal/Hz1/2, and a standard deviation of 0.5 mGal with an average time of 10 s. We also demonstrate the first test of an atom gravimeter in a moving vehicle, in which a suppression factor of 50.85 and a sensitivity of 60.88 mGal/Hz1/2 were realized with T = 5 ms.
doi:10.20944/preprints202111.0255.v1 fatcat:fqw7dphujbbrnnagha7e2a7uze