A Note on Coloring Vertex-Transitive Graphs

Daniel W. Cranston, Landon Rabern
2015 Electronic Journal of Combinatorics  
We prove bounds on the chromatic number $\chi$ of a vertex-transitive graph in terms of its clique number $\omega$ and maximum degree $\Delta$. We conjecture that every vertex-transitive graph satisfies $\chi \le \max \{\omega, \left\lceil\frac{5\Delta + 3}{6}\right\rceil\}$, and we prove results supporting this conjecture. Finally, for vertex-transitive graphs with $\Delta \ge 13$ we prove the Borodin–Kostochka conjecture, i.e., $\chi\le\max\{\omega,\Delta-1\}$.
doi:10.37236/4626 fatcat:cs3nkszcandx5jpkcb4r6sdhs4