Effect of Different Rates of Ethanol Additive on Fermentation Quality of Napiergrass (Pennisetum purpureum)

Lei Zhang, C. Q. Yu, M. Shimojo, T. Shao
2011 Asian-Australasian Journal of Animal Sciences  
The effect of different rates of ethanol additive on fermentation quality of napiergrass (Pennisetum purpureum) and residual water soluble carbohydrate were studied in the experiment. The addition rate of ethanol was 0%, 1.5%, 2.5%, 3.5%, 4.5% on fresh weight of napiergrass. The laboratory silos were kept in the room, then were opened on 1, 3, 5, 7, 14, 30 days after ensiling and the changes of silage quality were analyzed, respectively. There was a fast and large reduction in pH from the 5th
more » ... n pH from the 5th day of ensiling to below 4.2 except for the 4.5% treatment. After five days the pH of silage decreased slowly and the pH of the ethanol additions was lower than the control. Lactic acid content of ethanol treatments increased significantly (p<0.05) from the 5th day of ensiling, reaching the highest value on either the 7th day or 14th day. The ethanol additive inhibited the break down of silage protein and the ammonia nitrogen content of ethanol addition silage was significantly (p<0.05) lower than the control after 30 days of ensiling. Within the initial first day of ensiling the water soluble carbohydrate content declined quickly. The efficiency of water soluble carbohydrate usage was higher in silage with ethanol than in the control. The acetic acid of ethanol treatment was significantly (p<0.05) lower than control on first and 14th day, but there was no significant (p>0.05) difference among the ethanol addition silages. The volatile fatty acids content of silage increased gradually from the first day of ensiling and reached the peak on 14th day or 30th day and the content of ethanol addition treatment was significantly (p<0.05) lower than the control. The experimental results indicated that adding ethanol inhibited the use of protein and water soluble carbohydrate of aerobic bacteria and reduced the silage losses during the early stage of ensiling and thus supplied more fermentation substrate for lactic acid bacteria and improved the fermentation quality of napiergrass. (
doi:10.5713/ajas.2011.10416 fatcat:llthomhjv5ae3brk352k2x5o7a