Assimilation of Radar Radial Velocity Data with the WRF Hybrid Ensemble–3DVAR System for the Prediction of Hurricane Ike (2008)

Yongzuo Li, Xuguang Wang, Ming Xue
2012 Monthly Weather Review  
An enhanced version of the hybrid ensemble-three-dimensional variational data assimilation (3DVAR) system for the Weather Research and Forecasting Model (WRF) is applied to the assimilation of radial velocity (Vr) data from two coastal Weather Surveillance Radar-1988 Doppler (WSR-88D) radars for the prediction of Hurricane Ike (2008) before and during its landfall. In this hybrid system, flow-dependent ensemble covariance is incorporated into the variational cost function using the extended
more » ... ng the extended control variable method. The analysis ensemble is generated by updating each forecast ensemble member with perturbed radar observations using the hybrid scheme itself. The Vr data are assimilated every 30 min for 3 h immediately after Ike entered the coverage of the two coastal radars. The hybrid method produces positive temperature increments indicating a warming of the inner core throughout the depth of the hurricane. In contrast, the 3DVAR produces much weaker and smoother increments with negative values at the vortex center at lower levels. Wind forecasts from the hybrid analyses fit the observed radial velocity better than that from 3DVAR, and the 3-h accumulated precipitation forecasts from the hybrid are also more skillful. The track forecast is slightly improved by the hybrid method and slightly degraded by the 3DVAR compared to the forecast from the Global Forecast System (GFS) analysis. All experiments assimilating the radar data show much improved intensity analyses and forecasts compared to the experiment without assimilating radar data. The better forecast of the hybrid indicates that the hybrid method produces dynamically more consistent state estimations. Little benefit of including the tuned static component of background error covariance in the hybrid is found.
doi:10.1175/mwr-d-12-00043.1 fatcat:34v6prrscrhehhjdru5yl475va