A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
A genre trust model for defending shilling attacks in recommender systems
2021
Complex & Intelligent Systems
AbstractShilling attacks have been a significant vulnerability of collaborative filtering (CF) recommender systems, and trust in CF recommender algorithms has been proven to be helpful for improving the accuracy of system recommendations. As a few studies have been devoted to trust in this area, we explore the benefits of using trust to resist shilling attacks. Rather than simply using user-generated trust values, we propose the genre trust degree, which differ in terms of the genres of items
doi:10.1007/s40747-021-00357-2
fatcat:r54hdarn3vfn7cbywbxuknadh4