Best-Arm Identification in Linear Bandits [article]

Marta Soare, Alessandro Lazaric, Rémi Munos
<span title="2014-11-04">2014</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We study the best-arm identification problem in linear bandit, where the rewards of the arms depend linearly on an unknown parameter θ^* and the objective is to return the arm with the largest reward. We characterize the complexity of the problem and introduce sample allocation strategies that pull arms to identify the best arm with a fixed confidence, while minimizing the sample budget. In particular, we show the importance of exploiting the global linear structure to improve the estimate of
more &raquo; ... e reward of near-optimal arms. We analyze the proposed strategies and compare their empirical performance. Finally, as a by-product of our analysis, we point out the connection to the G-optimality criterion used in optimal experimental design.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1409.6110v2</a> <a target="_blank" rel="external noopener" href="">fatcat:u65bel3bmnfmplkn7fj5vnuuyy</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>