Robust stochastic analysis with applications [article]

David Johannes Prömel, Humboldt-Universität Zu Berlin, Humboldt-Universität Zu Berlin
2017
Diese Dissertation präsentiert neue Techniken der Integration für verschiedene Probleme der Finanzmathematik und einige Anwendungen in der Wahrscheinlichkeitstheorie. Zu Beginn entwickeln wir zwei Zugänge zur robusten stochastischen Integration. Der erste, ähnlich der Ito'schen Integration, basiert auf einer Topologie, erzeugt durch ein äußeres Maß, gegeben durch einen minimalen Superreplikationspreis. Der zweite gründet auf der Integrationtheorie für rauhe Pfade. Wir zeigen, dass das
more » ... nde Integral als Grenzwert von nicht antizipierenden Riemannsummen existiert und dass sich jedem "typischen Preispfad" ein rauher Pfad im Ito'schen Sinne zuordnen lässt. Für eindimensionale "typische Preispfade" wird sogar gezeigt, dass sie Hölder-stetige Lokalzeiten besitzen. Zudem erhalten wir Verallgemeinerungen von Föllmer's pfadweiser Ito-Formel. Die Integrationstheorie für rauhe Pfade kann mit dem Konzept der kontrollierten Pfade und einer Topologie, welche die Information der Levy-Fläche enthält, entwickelt werden. Deshalb untersuchen wir hinreichende Bedingungen an die Kontrollstruktur für die Existenz der Levy-Fläche. Dies führt uns zur Untersuchung von Föllmer's Ito-Formel aus der Sicht kontrollierter Pfade. Para-kontrollierte Distributionen, kürzlich von Gubinelli, Imkeller und Perkowski eingeführt, erweitern die Theorie rauher Pfade auf den Bereich von mehr-dimensionale Parameter. Wir verallgemeinern diesen Ansatz von Hölder'schen auf Besov-Räume, um rauhe Differentialgleichungen zu lösen, und wenden die Ergebnisse auf stochastische Differentialgleichungen an. Zum Schluß betrachten wir stark gekoppelte Systeme von stochastischen Vorwärts-Rückwärts-Differentialgleichungen (FBSDEs) und erweitern die Theorie der Existenz, Eindeutigkeit und Regularität der sogenannten Entkopplungsfelder auf Markovsche FBSDEs mit lokal Lipschitz-stetigen Koeffizienten. Als Anwendung wird das Skorokhodsche Einbettungsproblem für Gaußsche Prozesse mit nichtlinearem Drift gelöst.
doi:10.18452/17373 fatcat:jyq6263wpbeuvetqs2zi7yhxku