A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2006; you can also visit the original URL.
The file type is application/pdf
.
Incremental Least Squares Methods and the Extended Kalman Filter
1996
SIAM Journal on Optimization
In this paper we propose and analyze nonlinear least squares methods, which process the data incrementally, one data block at a time. Such methods are well suited for large data sets and real time operation, and have received much attention in the context of neural network training problems. We focus on the Extended Kalman Filter, which may be viewed as an incremental version of the Gauss-Newton method. We provide a nonstochastic analysis of its convergence properties, and we discuss variants aimed at accelerating its convergence.
doi:10.1137/s1052623494268522
fatcat:23f5eg25ejh3padcbib32ojhsi