Algebraic shape invariant potentials as the generalized deformed oscillator

Wang-Chang Su
2009 Journal of Physics A: Mathematical and Theoretical  
Within the framework of supersymmetric quantum mechanics, we study the simplified version of potential algebra of shape invariance condition in k steps, where k is an arbitrary positive integer. The associated potential algebra is found to be equivalent to the generalized deformed oscillator algebra that has a built-in Z_k-grading structure. The algebraic realization of shape invariance condition in k steps is therefore formulated by the method of Z_k-graded deformed oscillator. Based on this
more » ... or. Based on this formulation, we explicitly construct the general algebraic properties for shape invariant potentials in k steps, in which the parameters of partner potentials are related to each other by translation a_1 = a_0 + \delta. The obtained results include the cyclic shape invariant potentials of period k as a special case.
doi:10.1088/1751-8113/42/38/385202 fatcat:z6tejopxnfhithie25owyk7ssy