Oral Administration of Liquiritigenin Confers Protection from Atopic Dermatitis through the Inhibition of T Cell Activation

Hyun-Su Lee, Eun-Nam Kim, Gil-Saeng Jeong
2020 Biomolecules  
While liquiritigenin, isolated from Spatholobus suberectus Dunn, is known to possess anti-inflammatory activities, it still remains to be known whether liquiritigenin has a suppressive effect on T cell activation and T cell-mediated disease. Here, we used Jurkat T cells to explore an underlying mechanism of pre-treatment with liquiritigenin in activated T cell in vitro and used atopic dermatitis (AD) in vivo to confirm it. We found liquiritigenin blocks IL-2 and CD69 expression from activated T
more » ... on from activated T cells by PMA/A23187 or anti-CD3/CD28 antibodies. The expressions of surface molecules, including CD40L and CD25, were also reduced in activated T cells pre-treated with liquiritigenin. Western blot analysis indicated repressive effects by liquiritigenin are involved in NFκB and MAPK pathways. To assess the effects of liquiritigenin in vivo, an AD model was applied as T cell-mediated disease. Oral administration of liquiritigenin attenuates AD manifestations, including ear thickness, IgE level, and thicknesses of dermis and epidermis. Systemic protections by liquiritigenin were observed to be declined in size and weight of draining lymph nodes (dLNs) and expressions of effector cytokines from CD4+ T cells in dLNs. These results suggest liquiritigenin has an anti-atopic effect via control of T cell activation and exhibits therapeutic potential for T cell-mediated disorders.
doi:10.3390/biom10050786 pmid:32438694 fatcat:3rh3yhlsfjdmtmaq7kzmvzre2y