Quality Estimation of Speech Recognition Features for Dynamic Time Warping Classifier

Rasa Lileikytė, Laimutis Telksnys
2012 Information Technology and Control  
The choice of the quality features set remains the main issue for the successful speech recognition system. In the literature, quality of features is estimated by calculating the classification error. So that, it is needed to run classification process with each explored feature system in order to choose the highest quality one. Therefore, a major issue of this paper is to propose a methodology for quality establishment of speech features without running the classification process. The proposed
more » ... ocess. The proposed methodology is based on metrics that do not need parameters setting, thus the results can be uniformly interpreted across the different problems. The methodology consists of the following parts: 1) establishment of the best metric in combination with used classifier, 2) making a decision regarding the highest quality feature system. In the experiment, we use Dynamic Time Warping (DTW) classifier. The metric of intra/inter class nearest neighbor distances (Q3) is identified as the best one. Employing our proposed methodology, we established Perceptual Linear Prediction analyses to be the highest quality feature system within the explored feature systems. The correctness of the results is confirmed by DTW classification error.
doi:10.5755/j01.itc.41.3.914 fatcat:okc4bxpt4zerbjd7clnf4ifcp4