When Considering More Elements: Attribute Correlation in Unsupervised Data Cleaning under Blocking

Li, Dai, Wang
2019 Symmetry  
In banks, governments, and internet companies, due to the increasing demand for data in various information systems and continuously shortening of the cycle for data collection and update, there may be a variety of data quality issues in a database. As the expansion of data scales, methods such as pre-specifying business rules or introducing expert experience into a repair process are no longer applicable to some information systems requiring rapid responses. In this case, we divided data
more » ... divided data cleaning into supervised and unsupervised forms according to whether there were interventions in the repair processes and put forward a new dimension suitable for unsupervised cleaning in this paper. For weak logic errors in unsupervised data cleaning, we proposed an attribute correlation-based (ACB)-Framework under blocking, and designed three different data blocking methods to reduce the time complexity and test the impact of clustering accuracy on data cleaning. The experiments showed that the blocking methods could effectively reduce the repair time by maintaining the repair validity. Moreover, we concluded that the blocking methods with a too high clustering accuracy tended to put tuples with the same elements into a data block, which reduced the cleaning ability. In summary, the ACB-Framework with blocking can reduce the corresponding time cost and does not need the guidance of domain knowledge or interventions in repair, which can be applied in information systems requiring rapid responses, such as internet web pages, network servers, and sensor information acquisition.
doi:10.3390/sym11040575 fatcat:uuoxkhvzbzhllixn464kswicoq