A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
Absence of mixing in area-preserving flows on surfaces

2011
*
Annals of Mathematics
*

We prove that minimal area-preserving flows locally given by a smooth Hamiltonian on a closed surface of genus g ≥ 2 are typically (in the measure-theoretical sense) not mixing. The result is obtained by considering special flows over interval exchange transformations under roof functions with symmetric logarithmic singularities and proving absence of mixing for a full measure set of interval exchange transformations. 1 The notion of typical here is measure-theoretical; i.e., it refers to

doi:10.4007/annals.2011.173.3.10
fatcat:jslttrwac5bvbaoo236hk32hnm