The limits of the nuclear chart set by fission and alpha decay

Peter Möller, D. Rudolph
2016 EPJ Web of Conferences  
I will review how our picture of heavy-element nuclear structure has evolved through remarkably simple ideas and related models. It is well known that the Bethe-Weizsäcker semi-empirical mass model had an important role in unraveling radioactive decay and element transmutation in the heavy-element region in the 1930s. A remarkable aspect is that this model could immediately after the discovery of fission be generalized to explain this phenomenon through the consideration of deformation of a
more » ... eformation of a charged liquid drop. Bethe and Bacher already raised the possibility that shell structure (by them calculated in terms of a single-particle oscillator potential) could give rise to noticeable deviations between results of the macroscopic mass model and experiment but limited data prevented firm conclusions. In the 1950s the single-particle models took a realistic form and also included deformation. The possibility of the existence of a relatively stable "island" of superheavy elements was raised already then. But it was not until the work by Strutinsky in the mid 1960s that a quantitative model for the nuclear potential-energy emerged in the form of the macroscopicmicroscopic model. Although new elements have been discovered at an almost steady pace since 1940, theory indicates that we are close to the end of this era: repulsive Coulomb effects will set the limit of observable elements to near Z = 120. C The Authors, published by EDP Sciences. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0
doi:10.1051/epjconf/201613103002 fatcat:2w4cbqs6yvaffi27ebstc3ebem