A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
A Novel Tropical Cyclone Size Estimation Model Based on a Convolutional Neural Network Using Geostationary Satellite Imagery
2022
Remote Sensing
A novel tropical cyclone (TC) size estimation model (TC-SEM) in the western North Pacific was developed based on a convolutional neural network (CNN) using geostationary satellite infrared (IR) images. The proposed TC-SEM was tested using three CNN schemes: a single-task regression model that separately estimated the radius of maximum wind (RMW) and the radius of 34 kt wind (R34) of the TC, a multi-task regression model that estimated the RMW and R34 simultaneously, and a multi-task regression
doi:10.3390/rs14020426
fatcat:qvqi6hzdv5fk3kk26ngizlob7y