Twin Positive Solutions for Schrödinger-Kirchhoff-Type Problem with Singularity and Critical Exponents

Wei Han, Yangyang Zhao
2018 Journal of Function Spaces  
We study in this paper the following singular Schrödinger-Kirchhoff-type problem with critical exponent -a+b∫Ω∇u2dxΔu+u=Q(x)u5+μxα-2u+f(x)(λ/uγ) in Ω,u=0 on ∂Ω, where a,b>0 are constants, Ω⊂R3 is a smooth bounded domain, 0<α<1, λ>0 is a real parameter, γ∈(0,1) is a constant, and 0<μ<aμ1 (μ1 is the first eigenvalue of -Δu=μxα-2u, under Dirichlet boundary condition). Under appropriate assumptions on Q and f, we obtain two positive solutions via the variational and perturbation methods.
doi:10.1155/2018/6108538 fatcat:yvbfde2pvzhz3kxsjj6ymcnn7q