Influence of condensation and latent heat release upon barotropic and baroclinic instabilities of vortices in a rotating shallow water f-plane model

Masoud Rostami, Vladimir Zeitlin
2018 Figshare  
Analysis of the influence of condensation and related latent heat release upon developing barotropic and baroclinic instabilities of large-scale low Rossby-number shielded vortices on the f - plane is performed within the moist-convective rotating shallow water model, in its barotropic (one-layer) and baroclinic (two-layer) versions. Numerical simulations with a high-resolution well-balanced finite-volume code, using a relaxation parameterisation for condensation, are made. Evolution of the
more » ... ability in four different environments, with humidity (i) behaving as passive scalar, (ii) subject to condensation beyond a saturation threshold, (iii) subject to condensation and evaporation, with two different parameterisations of the latter, are inter-compared. The simulations are initialised with unstable modes determined from the detailed linear stability analysis in the "dry" version of the model. In a configuration corresponding to low-level mid-latitude atmospheric vortices, it is shown that the known scenario of evolution of barotropically unstable vortices, consisting in formation of a pair of dipoles ("dipolar breakdown") is substantially modified by condensation and related moist convection, especially in the presence of surface evaporation. No enhancement of the instability due to precipitation was detected in this case. Cyclone-anticyclone asymmetry with respect to sensitivity to the moist effects is evidenced. It is shown that inertia-gravity wave emission during the vortex evolution is enhanced by the moist effects. In the baroclinic configuration corresponding to idealised cut-off lows in the atmosphere, it is shown that the azimuthal structure of the leading unstable mode is sensitive to the details of stratification. Scenarios of evolution are completely different for different azimuthal structures, one leading to dipolar breaking, and another to tripole formation. The effects of moisture considerably enhance the perturbations in the lower layer, especially in the tripole formation scenario.
doi:10.6084/m9.figshare.6069014.v1 fatcat:irrkoknzczgl3gwthfkawnnkhi