Stochastic volatility in mean models with heavy-tailed distributions

Carlos A. Abanto-Valle, Helio S. Migon, Victor H. Lachos
2012 Brazilian Journal of Probability and Statistics  
A stochastic volatility in mean (SVM) model using the class of symmetric scale mixtures of normal (SMN) distributions is introduced in this article. The SMN distributions form a class of symmetric thick-tailed distributions that includes the normal one as a special case, providing a robust alternative to estimation in SVM models in the absence of normality. A Bayesian method via Markov-chain Monte Carlo (MCMC) techniques is used to estimate parameters. The deviance information criterion (DIC)
more » ... n criterion (DIC) and the Bayesian predictive information criteria (BPIC) are calculated to compare the fit of distributions. The method is illustrated by analyzing daily stock return data from the São Paulo Stock, Mercantile & Futures Exchange index (IBOVESPA). According with both model selection criteria as well as out-of-sample forecasting, we found that the SVM model with slash distribution provides a significant improvement in model fit as well as prediction for the IBOVESPA data over the usual normal model. imsart-bjps ver. 2011/01/24 file:
doi:10.1214/11-bjps169 fatcat:pv2p25gum5fkxelh2pypihurtu