Tractable Refinement Checking for Concurrent Objects

Ahmed Bouajjani, Michael Emmi, Constantin Enea, Jad Hamza
2015 Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL '15  
Efficient implementations of concurrent objects such as semaphores, locks, and atomic collections are essential to modern computing. Yet programming such objects is error prone: in minimizing the synchronization overhead between concurrent object invocations, one risks the conformance to reference implementations -or in formal terms, one risks violating observational refinement. Testing this refinement even within a single execution is intractable, limiting existing approaches to executions
more » ... very few object invocations. We develop a polynomial-time (per execution) approximation to refinement checking. The approximation is parameterized by an accuracy k ∈ N representing the degree to which refinement violations are visible. In principle, more violations are detectable as k increases, and in the limit, all are detectable. Our insight for this approximation arises from foundational properties on the partial orders characterizing the happens-before relations between object invocations: they are interval orders, with a well defined measure of complexity, i.e., their length. Approximating the happens-before relation with a possibly-weaker interval order of bounded length can be efficiently implemented by maintaining a bounded number of integer counters. In practice, we find that refinement violations can be detected with very small values of k, and that our approach scales far beyond existing refinement-checking approaches.
doi:10.1145/2676726.2677002 dblp:conf/popl/BouajjaniEEH15 fatcat:33rvcyg3sncupdgm3ta6yo5qqi