Kinetic Reactions Modeling and Optimization of Claus Process [post]

Muhammad Arslan Zahid, Faisal Ali, Muhammad Mubashir, Faheem Iqbal
2020 unpublished
There are many pollution and environment problem in the human ecosystem. There are different methods are used to removal of sulfur from sour gases for example Basic Claus process and Modified Claus process . There are different chemical software are used for simulation and optimization of Claus process for example Aspen Plus and Chemcad ECT. The Gibbs free energy method is introduced and model of Claus process. There are new parameter are introduced in reaction furnace to reduce the error from
more » ... uce the error from 33% to 7 %. The waste heat boiler is installed at the reaction furnace in which high pressure stream is produced and study the decomposition the hydrogen sulphide. The new rate of reaction is introduced of the enhancement of H2 production in chemical process. The simulation of reaction furnace in Aspen plus software is the maximum utilization of process. Due to suitable operating condition of reaction furnace is caused the maximum destruction of ammonia gas in the reactor. When we are increasing the oxygen concentration and temperature of feed is causing decreasing the ammonia production in reaction furnace. It is below than acceptance value of ammonia is 150 ppm in the reaction furnace. The presence of oxygen components, Sulfur oxide, hydroxide components are effect on decreasing the amount of ammonia in furnace and temperature is about at 1350⁰C. It is noted that when the production of sulfur recovery is decrease in Claus process and the production of carbon monoxide is increase in the thermal section at the existence. Now we are work on parametric studies of furnace that could be causes the production of ammonia destruction and CO emission in the Claus process. Due to optimize the reaction furnace parameter are help to get large of sulfur production, ammonia gas destruction, increased the catalyst life and decreased of dangerous gases.
doi:10.20944/preprints202007.0590.v1 fatcat:k5hgrjm7avgobd3anv34icv36m