The Infectious Nature of Patient-Generated SARS-CoV-2 Aerosol [article]

Joshua L Santarpia, Vicki L Herrera, Danielle N Rivera, Shanna Ratnesar-Shumate, St. Patrick Reid, Paul W Denton, Jacob W.S. Martens, Ying Fang, Nicholas Conoan, Michael V Callahan, James V Lawler, David M Brett-Major (+1 others)
2020 medRxiv   pre-print
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission causing coronavirus disease 2019 (COVID-19) may occur through multiple routes. We collected aerosol samples around six patients admitted into mixed acuity wards in April of 2020 to identify the risk of airborne SARS-CoV-2. Measurements were made to characterize the size distribution of aerosol particles, and size-fractionated, aerosol samples were collected to assess the presence of infectious virus in particles sizes of
more » ... 4.1 μm, 1-4 μm, and <1 μm in the patient environment. Samples were analyzed by real-time reverse-transcriptase polymerase chain reaction (rRT-PCR), cell culture, western blot, and transmission electron microscopy (TEM). SARS-CoV-2 RNA was detected in all six rooms in all particle size fractions (>4.1 μm, 1-4 μm, and <1 μm). Increases in viral RNA during cell culture of the virus from recovered aerosol samples demonstrated the presence of infectious, replicating virions in three <1 μm aerosol samples (P<0.05). Viral replication of aerosol was also observed in the 1-4 μm stage but did not reach statistical significance (0.05<P<0.10). Western blot and TEM analysis of these samples also showed evidence of viral proteins and intact virions. The infectious nature of aerosol collected in this study further suggests that airborne transmission of COVID-19 is possible, and that aerosol prevention measures are necessary to effectively stem the spread of SARS-CoV-2.
doi:10.1101/2020.07.13.20041632 fatcat:j32wqdb6xfedrho7qsmrxklwhi