Miniature wireless recording and stimulation system for rodent behavioural testing

R C Pinnell, J Dempster, J Pratt
2015 Journal of Neural Engineering  
Pinnell, R C and Dempster, J and Pratt, J (2015) Miniature wireless recording and stimulation system for rodent behavioural testing. Journal of Neural Engineering, 12 (6). Abstract Objective. Elucidation of neural activity underpinning rodent behaviour has traditionally been hampered by the use of tethered systems and human involvement. Furthermore the combination of deep-brain stimulation (DBS) and various neural recording modalities can lead to complex and time-consuming laboratory setups.
more » ... boratory setups. For studies of this type, novel tools are required to drive forward this research. Approach. A miniature wireless system weighing 8.5 g (including battery) was developed for rodent use that combined multichannel DBS and local-field potential (LFP) recordings. Its performance was verified in a working memory task that involved 4-channel fronto-hippocampal LFP recording and bilateral constant-current fimbria-fornix DBS. The system was synchronised with video-tracking for extraction of LFP at discrete task phases, and DBS was activated intermittently at discrete phases of the task. Main results. In addition to having a fast set-up time, the system could reliably transmit continuous LFP at over 8 hours across 3-5 m distances. During the working memory task, LFP pertaining to discrete task phases was extracted and compared with well-known neural correlates of active exploratory behaviour in rodents. DBS could be wirelessly activated/deactivated at any part of the experiment during EEG recording and transmission, allowing for a seamless integration of this modality. Significance. The wireless system combines a small size with a level of robustness and versatility that can greatly simplify rodent behavioural experiments involving EEG recording and DBS. Designed for versatility and simplicity, the small size and low-cost of the system and its receiver allow for enhanced portability, fast experimental setup times, and pave the way for integration with more complex behaviour.
doi:10.1088/1741-2560/12/6/066015 pmid:26468659 fatcat:ecbxij3ruvhhdde53gy6swj2lu